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We prove a form of reflection positiv]ty in planes containing sites for a class of 
quantum lattice systems. As an application, a proof is given of a phase transition 
for the Fisher-stabilized Ising antiferromagnet in an external magnetic field with 
parallel and transverse components, both by the method of infrared bounds and 
by a suitable version of the Peierls argument. We also discuss the spherical 
model in an appendix. 
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1. I N T R O D U C T I O N  A N D  S U M M A R Y  

In a pioneer paper, (1) Froehlich, Simon, and Spencer proved for the 
first time the existence of phase transitions for classical lattice systems with 
continuous symmetry. Their method was further generalized to include a 
class of quantum lattice systems by Dyson, Lieb, and Simon (2) and later 
abstracted and generalized to include proofs of phase transitions for both 
classical and quantum lattice systems by Froehlich, Israel, Lieb, and 
SimonJ 4) In the latter, the property of reflection positivity (RP) was most 
clearly isolated as a central element of both the proofs employing the 
method of infrared bounds, (1'4'5) as well as those which involve generalized 
versions of the Peierls argument. O-5) 

In many  applications, RP is required to be in planes between lattice 
sites. (m) In Ref. 3 and especially 5 applications were considered which 
require RP in p lanes  containing sites. As remarked in Ref. 5, this seems to 
pose the unfortunate limitation that quantum systems are not allowed. In 
this paper  we consider, however, a class of quantum lattice systems requir- 
ing RP in planes containing sites, which involve typically a transverse 
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magnetic field. Although somewhat restricted, this class illustrates a method 
which might be of wider range of application. 

The paper is organized as follows. In Section 2 we prove our main 
result, which is a form of RP in planes containing (or not) lattice sites for a 
class of models (Theorem 2.1). The method of proof may be roughly 
described as rendering the system "classical" by means of the Trotter 
product formula, together with a choice of convenient intermediate states 
(alternatively, path-space methods similar to Ref. 6 could have been used). 

In Sections 3 and 4 we illustrate the results through a typical model, 
namely, the Fisher-stabilized Ising antiferromagnet (see Ref. 5) in an 
external magnetic field with both parallel and transverse components. In 
Section 3 we employ the method of infrared bounds. There the "classical 
version" of the model is also used for the purpose of proving some 
inequalities along the lines of Ref. 6 which are necessary for the proof. 
Motivation for inequalities of this type stems from the similar structure of 
the spherical model with external parallel field, which is discussed for 
completeness in Appendix A. In Section 4 we sketch the proof of a phase 
transition for the model without stabilization, using a Version of the Peierls 
argument developed in Refs. 3 and 5. 

2. REFLECTION POSlTIVITY IN PLANES CONTAINING SITES: 
REAL QUANTUM SYSTEMS 

The notation and terminology of this section follows with minor 
modifications the one adopted in Ref. 4. Let ~ be a real algebra with unit 
which in our applications will be typically non-Abelian, and let ~ be an 
Abelian subalgebra of ~. Given a linear functional on ~ : A  ~ (A)o with 
(~)o --- 1 and H E 6g, we define 

( A ) .  =-- (Ae-H)o/(e-n)o (2.1) 

We suppose that 6~ contains two subalgebras ~+ and ~_ and a real linear 
morphism 0 on 6~+ U $_ (the smallest subalgebra of ~ containing both 6~+ 
and ~ ) such that 

(a) 8 (~+ ) = $_ 

(b) #a = 

(c) (Oa)o = (A)o  VA ~ e 

(d) O(~+ ) = ~_ 

where ~ •  
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Definition 2.1. A real linear functional ( - }  on ~ is called ~- 
reflection positive iff 

( A O ( A ) )  >~ 0 (2.2) 

for all A ~ ~+. ( �9 ) is called ~generalized reflection positive iff 

( A I O ( A 1 ) . . . A , O ( A , ) )  >1 0 for allA 1 . . . . .  A,  ~ +  (2.3) 

R e m a r k  2.1. (1) It is important to notice that we do not assume d~+ 
and ~_ to commute with each other and this is the reason why we consider 
this restricted form of reflection positivity. 

(2) Since ~ is Abelian, ( . )  is ~-reflection positive iff ( . )  is 
generalized reflection positive. 

If follows from the above definitions (4) that if - H  = B + OB + 
~ =  i CiO(Ci) with B 1Ci ~ ~+ then ( . ) ~  is ~reflection positive. The aim of 
the following discussion is to extend this result, allowing B to be certain 

A 

operators in ~+ rather than in ~+. 
We will consider the case where ~ is the algebra of observables of a 

quantum system composed of three "parts," that is, its Hilbert space of 
states % is given by % = %_ | | %+ where %+ and %_ are isomor- 
phic, and %+, %0 are all finite dimensional. ~ is the algebra of all real 
operators on %. 

~+ is the algebra generated by all operators in ~ of the form 
1 | A | B (under the decomposition % | | %+ ). Since d~ is the linear 
span of operators of the form A | B | C, 0 is well defined by 

0 ( A | 1 7 4 1 7 4 1 7 4  (2.4) 

If (A)0 = Tr~cA/Tr%l, then properties (a), (b), and (c) listed above are 
trivially verified. Let ~+ be a commutative subalgebra of ~+, ~_ = 0~+ 
and ~ = ~+ U ~_.  Then property (d) is also fulfilled. 

In order to state the main result of this section we introduce further the 
subalgebra ~+ as the set of elements in ~+ of the form I |  |  
~ _  = 0~+  and ~0 as the set of operators in ~ of the form I |  |  

A 

Then ~o = ~0 n ~. 
A bounded operator A on a Hilbert space g6 is called positivity 

preserving with respect to a basis {q~n},~>l in % iff (q~n,A~m) >1 0 for all 
n, r n ~  l. 

T h e o r e m  2.1. Let B ~ + ,  B o E ~  o and e tB~ for all t > 0  be a 
positivity-preserving operator in %0 with respect to a basis (cp~ which 
diagonalizes B o. If 

N 

- H = B + OB + B o + ~ CiOCi-~- O + OO (2.5) 
i = 1  

with C,., D E ~+, then ( - )~ / i s  ~-reflection positive. 



TrAO(A)[ e-n~ v/k] ~= 

404 Perez and Wreszinski 

o _ (n_, no, n+))  be a basis which Proof. L e t ( ~ , = %  | 1 7 4  
diagonalizes ~. We first notice that if V = B + OB + B o then 

( ~ , _ , e t V ~ )  = b t (n_ ,m_  )b~)(no, mo)bt(n+,m+ ) (2.6) 

with b'(n, m) = (%, e tee/;,) and b{)(n, m) = (q~o, e tBo~0). Moreover if - H 0 
= ~CiOCi + D + OD then 

(q_~,e-tH%o~) = 3,~,mFt(n_) (2.7) 

where the function F, can be written in the form 

F,_(t) = 2 ft(no, n -  )f'(no, n+ ) (2.8) 

We may further suppose the matrix elements (,I~,,A,t,m) to be real for all 
A E ~, since ~ is an algebra of real operators. 

Using Trotter product formula we have then 

(AO(A))n(e  -H)  = TrAO(A)e -H 

= lim TrAO(A) Ie -H~ (2.9) 
K - - >  

From (2.6), (2.7), and (2.8) we get 

2 ( '~'_''AO(A)[ e -  a~ V/k]~qt._, } 
n l 

= • a(n~, nm- )a(n~,nl+ )Ft(  _ n~)b'(n l_ ,n 2_.) 
n l , n  2 . . . .  , l'~ k 

2 • ) .  . . Ft(nk)bt(nk_,n ~_ ) 

• b~(n~,n~)bt(nk+,, l+) 

=Z Z ' '  bo(no,n~) 
i I 2 n o  k r / O ,  n o ~  . . . , 

t k k 2 �9 . .bo(no,n~)[gt (n  1 . . . . .  no) ] > 0  (2.10) 

where the first summation sign ~,i refers to the sums we get by using 
formula (2.8) k times and the gi are functions of the type 

~,, a(nl,nl'~r I nlXbttn I nExr In2 n2~bttn 2 )di~ o, J ~, , )Ji21, o, ) ~, , n3) 
r t  1 , . . . ~ n K 

�9 . . f t (nok ,nk)bt (nk ,  n ') 

In the above expressions t = 1 / k  and 

= (%0 | A o a(no, n ) o %, %o|174 
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By taking the limit k ~ oo we get 

((OA)A) >>.O [] 

Romark 2.2. (1) The assumptions of the theorem imply the possibil- 
ity of having a path space formulation for the Abelian algebra 8~ (see Ref. 
11) which is implicit in the proof through the use of Trotter's formula. 
Therefore the systems considered are under some aspects "classical" ones. 

(2) The possibility of having reflection positivity for subalgebras of 
quantum systems is mentioned in Refs. 3 and 5. 

Remark 2.3. The typical application of the above result for quantum 
spin systems is the following. Let the Hamiltonian of quantum spin system 
be of the form 

where 

and 

H A -- H0, A + V A (2.11 a) 

HO, A = ~ J(R)S3(R ) (2.11b) 
RCA 

vA= - a  S (x) 
x@A 

In the above S~(x), i = 1,2,3, x ~ A c 7/~ are spin operator 
3 

82(X) = 2 Si(x)  2= S ( S  -[- 1) 
i = l  

[ S~(x), Sj(y)] = i%.kSk(X)6x,y 

and, for R C A 

(2.11c) 

si(n)= II s,(x) 
x~R 

If ~ is the algebra generated by S3(R), R C A and ( . ) / t0  is ~-reflection 
positive with reflections on a plane % containing (or not) sites of the lattice A 
then ( �9 ) ,  is also ~-reflection positive with respect to the same reflection 
operation. (Notice that for planes not containing sites our result would 
follow from the general theory of reflection positivity as developed in Ref. 4 
without having to restrict to the Abelian subalgebra ~.) As examples of the 
above structure we mention antiferromagnets of the type discussed in this 
paper, the Pirogov-Sinai model (8) with a transverse external field, and the 
Ising model in triangular lattices with a transverse external field. 

Our results also apply to a quantum version of the anharmonic crystal 
extending the results of Ref. 3 for the classical version. This will be the 
subject of a subsequent paper. 
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3. INFRARED BOUNDS 

As a typical example requiring the theory of Section 2, we shall treat in 
this section and the next the Fisher-stabilized Ising antiferromagnet (5) in a 
magnetic field with both a parallel and a transverse component. In contrast 
to Ref. 5, the "next-nearest neighbor" interaction is taken for simplicity to 
be along lattice lines. The Hamiltonian is given by (2.11), with 

+ J  > 0 if R = {x,y} nearest neighbors ( i x - Y l  = 1) 

- ~ < 0 if R = { x, y } next-nearest neighbors along a 

J(R ), lattice line (ix - y[ = 2) 

- h < 0  i f R =  {x} 

zero otherwise (3.1) 

The sign of a is irrelevant, and we shall take a > 0 in (2.1 lc). Because 
of the nonzero parallel field h, &generalized reflection positivity (hence- 
forth RP for short) holds only in planes containing sites. The proof in 
Theorem 2.1 through the Trotter product formula is used here in a twofold 
way, both through the results of Section 2 and for the purpose of proving 
certain correlation inequalities. The latter are used to obtain bounds on 
expectation values of certain operators, which seem difficult to obtain by 
other means (see Lemma 3.1). In the present model, and in the Pirogov- 
Sinai model with transverse field mentioned in Remark 2.3, these expecta- 
tion values are not identically zero, owing to the absence of the symmetry 
S3(x)~-  S~(x). The symmetry-breaking interactions in these models are 
just those responsible for the lack of RP in planes between sites, so that 
these features are intimately related. 

By Theorem 2.1 we obtain the infrared bound 

(S3(p)*, S3(p)) D < l 2/  E2(p ) , p At,  p 0 (3.2) 

where 

Ez(p) ~ Z (1 - cos2ej) 
j = l  

g3(P)-=(2/A) 
x E A  

Above, A denotes the sublattice of the lattice A--7_ [ - L ,  L + 1]" (with 
periodic boundary conditions, L assumed to be odd) which contains the 
origin, and 

{ w---E---n L + I  + 1 ,  L + I  i = 1 ,  ,v}  A ~ =  L +  1 i'ni= ~ . . . .  ~ . . . .  
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the Fourier dual of A (viewed as a lattice). We shall also denote by 

A*={----E---~ n = , } L + I  i'l'li - L  . . . .  , L + I ,  i = I  . . . .  e 

the Fourier dual of A, and by B the sublattice complementary to A. We 
sketch the details leading to (3.2) in Appendix B. 

The Duhamel two-point function is defined by 

(A, B )D ==- 1 fO01 dx Tr(eX~HAe -(1- x)BH B ) 
Tr e - B~/ 

(with H = HA). We have, on the other hand, the sum rule 

2 ~A (S~(p)S~(p)) = 1 (3.3) 
A p  t 

The connection between (3.2) and (3.3) is realized by the Bruch-Falk 
inequality (7) (rediscovered in Ref. 2): 

(A*,A)o [ B([A*,[H,A]])  l 
�89 + AA*) >~ f 4(�89 +AA*))  

where f is the function from [0, oe) to [0, 1) defined implicitly by 

f (x  tanh x) - tanh x X 
The function f is monotone decreasing/z) An easy consequence of the 
latter property (Theorem 2.2 of Ref. 2) is the fact that if b >> gf(c/4g) with 
b , g , c > t 0 a n d b ~ <  bo, c < c  0 , t h e n g <  go, where 

( CO ) 1/2 "~0 = 1 (cobo),/2coth (3.4) go 

Now, 

and so 

[S3,(p),[HA,~3(p)] ] - 4a ~] S,(x) 
A x~A 

C=--B([S~(p),[HA,S3(p)]]) <2afl=-Co (3.5) 

Therefore, from (3.2), (3.4), (3.5), and the Bruch-Falk inequality we have 

(5~3(p)*S3(p)) <[  2,E2(p)a ]l/2coth( fl[2a,Ee(p)] l/z} p~A'~,p=/=O 

(3.6) 

If we set 

2 2 (g3(0)*g3(0)) = S (g3(~ 
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we obtain from (3.3) and (3.6) the inequality 

p~A~' 

Define, now, the quantities 

o o  = (E 
2 

= 08 - X (S3(01)2 (3.8) 

g(fl, h,a) h tanh[ fl(a 2 + h2) ~/2 (3.9) 
(a 2 + h2) ~/2 

(_~ ~ 1 _ 1 d~P 2 ~ 1 (3.10) 
J(~) - f ~  2E~(p) (2~1 ~ fB~ Ej=,(1 - cos pj) 

where 
B~=--[-~r/Z, rr/2] ~ , B~' =[  - ~r,~r] ~ 

0o ---- lim ~o A (3.11) 
A--) oc 

Lemma 3.1. 
2(~3(0)) 2 

g(/~,h,a) 
A 

ire < J. 
We shall prove this lemma at the end of this section. Assuming it for 

the moment, we are ready to prove the main result of this section: 

Proposition 3.1. The model defined by (2.11) and (3.1) has a phase 
transition characterized by 

Po > 0 (3.12) 

in the region of parameters (fl, a, h, e) defined by the inequalities 

1 fBod,p[ 2EEl(p) ] '/2c~ (/312aeE2(p)]l/2) < 1 -  g(/3,h,a) (7)" 
(3.13) 

0 < e < J (3.14) 

Proof. It follows from (3.7), (3.8), and Lemma 3.1 [which is true 
provided (3.14) holds] that 

ffS >~ 1 -  g( t~,h,a) - 2 p~o E 2'Ea2(_P)] 1/2c~ 
pEAT 
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Taking the limit A ~ ~ in the above inequality, we see that (3.12) will be 
satisfied if (3.13) is assumed. �9 

Remark 3. 1. The integral in the left-hand side of (3.13) is finite if 
> 3 as the inequality (2) 

shows. 

Remark 3.2. The 

cothx < 1/x + 1 (3.15) 

same estimate (3.13), with g = 0 ,  E ~ J ,  E2(P ) 
---~El(p) = JY.~.=l( l -  cos p j) may be applied to the Ising model with 
transverse field and nearest-neighbor interactions of strength J considered 
in Ref. 6, leading to an improvement of the estimates found there. 

Corollary 3.1. Inequality (3.12) is true if/3 > tic, where/3 = tic is the 
unique solution of 

- ~ 1  ~" [u.d~o '~ 2eE2(-P)a ] 1/2coth { fl[ZaeE2(p)] '/2 } = 0  (3.16) 1 - a  

provided (3.14) holds and, in addition, 

g(fl, h,a) < a (3.17) 

and 

I(a,e)-- 1 a < 1 (3.18) 
----- (-'-~ :~ d~ I 2eEl (p)1  ~/2 

Above, a is an arbitrary number such that 0 < a < 1. 

Proof. Using inequality (3.15) together with the dominated conver- 
gence theorem (for v > 3) we see that the left-hand side of (3.16) increases 
monotonically from - m  to [ 1 - a -  I(a,E)] as /3 varies from 0 to m. 
Hence, there will be a unique solution of (3.16) if and only if (3.18) holds. 
The final assertion follows then from (3.13) and (3.17). �9 

Corollary 3.2. Inequality (3.12) holds if, in addition to (3.14) and 
(3.17), the following inequality is satisfied: 

( a ]1/2 1/2+ 2 I(V) < 1 - -  

, ,  
(3.19) O~ \ 

ProoL By (3.13), (3.17), and (3.15), (3.12) holds if 

, F a J ' (  ' +,1<1o vr '7 ~ d~p 2eEl(p) fl[2aeE2(p)]U 2 (3.20) 
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By the Schwartz inequality 

-~ f=d'p 2cE2(p) < ( a ),121 '(v)1,i2 (3.21) 

and (3.19) follows from (3.20) and (3.21). 

Remark 3. 3. Condition (3.17) is satisfied in particular if 

a/> (1 a_.____aa )!/2 h 

independently of ft. 

Remark 3.4. Proposition 3.1 is of interest because it provides in 
general better estimates for the region of parameters (fi, a, h, e) where a 
phase transition occurs than those obtained by the Peierls-type arguments 
outlined in the next section. 

We now prove Lemma 3.1. The proof is based on inequalities intro- 
duced in Ref. 6 and on the F K G  inequality. (9) 

Hamiltonian (3.1) may be written 

1 H A=-~J ~ S3(x)S3(y ) - h  ~, S3(x ) 
Ix-y[= 1 x~A 

- r E s3(x)&(y)- ~ E s~(x) 
2 Ix_yl= 2 x~A 

Let d be the sublattice containing {0} and B its complement with respect 
to 7/'. By a rotation of ~r around the 1-axis of the spins in B N A, H A is 
transformed to 

HA= - ~J ~ S,(x)S,(y)- ~, h(x)S3(x) 
I x - y [  = 1 x ~ A  

s 
- -~ ~.~ S3(x)S3(y ) -  a ~ Sl(X ) 

Ix-y[=2 x~A 
where h( .)  is an alternating (staggered) magnetic field: 

h i f x E A  
h(x)= - h  i f x ~ B  

Let now 

/1A(h) =~ H' a + ?~J ~ $3(0)$3(x) 
Ixl=l 

+ Xe ~ S3(O)S3(x) 
IxL=2 

and ( �9 )~, denote the expectation value in the Gibbs state defined by/~A(;k). 
In particular, ( .  ~= 0  is the Gibbs state defined by H~ and ( .  ~ =  1 is the 
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state defined by /]A(1), where the spin at x = 0 is "decoupled" from its 
neighbors. By Theorem 2.1,' 

(S3(O))'x= lira ( s (o ,  l)}(x k) (3.22) 
k--> oo 

where (S(0, 1))~ k) is the expectation value of the "classical" spin variable 
S(0, 1) corresponding to $3(0 ) in the Ising model in (p + l) dimensions 
which results from the proof of Theorem 2.1 .for this case [k being the index 
counting the number of iterations in the Trotter product formula, as in 
(2.9)]. For explicit formulas, see, e.g., Ref. 6. The only explicit result we 
shall need concerns the sign of the coupling constant in the (t, + 1)-th 
dimension (6) : 

Fk = _ i log t a n h ( f l a / k )  (3.23) 

where k is the same index above. 

Lemma 3.2. (a) 
sgn(S3(x)) 'x= sgnh(x)  V)t E [0, 1] 

(b) I f e  < J, 

(S3(x))'~=o -< (S3(x))%, 
if x E A  AA, 

if x E B N A. Further 

(S3(x)) 'x=,  = 

(S3(x))'~=o ~> (S3(x))%, 

h(x) 
tanh { ilia2+ h(x)2] '/2} 

[a2+h(x)2] '/2 

= sgnh(x)  • g(fi, h,a) 

(3.24a) 

(3.24b) 

Proof. Part (a) follows from (3.22) and well-known results for the 
classical Ising model. 

As for part (b) we have, V~, k 

d(S(O, 1))i ~ 2 [(s(o, 
Ixl=l 

- (s(o,  1))k~)(s(o, l)S(~, 1))k ~)] 

[(S(O, 
Ixl=2 

• (s(o, 1)S(x, 1))i k) ] (3.26) 

(3.25) 
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For any }k El0, 1] the N-body interactions in the above Ising model 
(N > 2) are ferromagnetic for sufficiently large k, because of (3.23). The 
FKG inequality (9) therefore applies and we obtain 

(S(0, 1)S(x, 1))(k)/> (S(O, 1))(k)(S(x, I))(X k) (3.27) 

and by part (a) 

(S(0, l))  i> 0 (3.28) 

Putting (3.27) and (3.28) into (3.26) yields 

d~ 

• z~ < s(x, l ~ > x ~  + B~ {, - i< s(0,,~>~] 2) 

• 1))xeA n a (3.29) 

where z, is the number of nearest (and next-nearest) neighbors of a lattice 
point in v dimensions. By part (a) and translation invariance [with simulta- 
neous change of sgnh(x)] we have 

(S(x,I))x~AnA = - ( S ( x ,  1))x~nA=--S > 0  (3.30) 

By (3.29) and (3.30) we have 

d(S(O, 1))~ ~ 
<. - z ~ ( J -  e)-(1 - $2)S 

d2t 
<0 

if e < J. This holds for any (sufficiently large) k, hence also in the limit 
k ~ ~ .  The proof of (3.24b) is identical. �9 

Proof of  Lemma 3. 1. 

^ [ 1/2 2 

-4[ 12 A2 E (s3(z))[=o x~A 
< g( fi, h,a) 

by (3.24) and (3.25). �9 

Remark 3. 5. As remarked in the Introduction, inequalities of the 
above type were suggested to us by inspection of the similar structure of the 
spherical model, which we discuss for completeness in Appendix A. 



Phase Transitions and Reflection Positivity 413 

4. THE PEIERLS ARGUMENT 

This section is very descriptive, because we only verify the assumptions 
necessary to apply the general results of Refs. 3 and 5. We consider as 
typical example the same model (3.1) but with c---0. Apart from a 
constant, the Hamiltonian may be written 

HA-=(J/2) ~,, S3(x)S3(y ) - h  • S3(x ) --a  E SI(X) (4.1) 
] x - y l =  1 x ~ A  x E A  

At each site x ~ 7/"=2 let P -+ (x) be the orthogonal projection operators, 
which project onto the subspaces of states ] -+ )x at x with S3(x) I +)x = 
-+ I +)x. By combining the methods of Refs. 3 and 5, the following result 
may be proved: 

Proposition 4.1. Let ]hi < J. Then there exist 0 < tic(J) < ~ and 
0 < ao(J ) < m such that, if/3 > tic(J) and a < ao(J ) the following inequal- 
ity holds: 

(P++-(x)e~-(-l)lVl(X-.l- y)) < 1/4 (4.2) 

Remark. As in Ref. 5, (4.2) implies the existence of more than one 
equilibrium state. 

Proof. The proof follows from the method of Ref. 3 (as applied to 
the quantum antiferromagnet) together with the general RP result of 
Section 2, and the following remarks. As in Ref. 3 we use a contour 
argument but now draw contours between nearest-neighbor spins if they 
have the same sign. The relevant "universal projection" PA is of the form 

+ + + + + + + +  

+ + + + + + + + ( N = 8 ,  M = 4 )  

-t- 

-I- 

+ + + + + + +  

+ ] +  + + + + + 

or ( + - ~  - )  

(compare Ref. 3, p. 241). Let eo(a ) be the ground-state energy of H A, and 
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define (in close analogy to Ref. 3, p. 256) 

B A -  a ~] S I ( X  ) 
x E A  

H z ~ H A - B A 

A A = - H • - e o ( a =  1) 

Again here + B A < aA A by the variational principle. In analogy to Ref. 3, 
(3.24), p. 256, define 

P--  e Z -  eo(a = 1) + nAA 

where e~ = eo(a = 0). Then (Ref. 3, p. 257) 

ez(PA) = i n f s p e c ( P A H ~ P a ) -  eo(a = 1) 

is the minimal A A energy of any state in PA % and satisfies 

ez(PA) -- p > (2J - nA)A (4.3) 

To prove (4.3), it suffices to recall (s) that, if [hi < J, the ground state of H~ 
is doubly degenerate, obtained by periodizing the block (_+ ~_ ), and also by 
translating the resulting state by one unit. With the above result, the proof 
is straightforward along the lines of Ref. 3. [] 
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APPENDIX A: THE SPHERICAL MODEL WITH STAGGERED 
EXTERNAL FIELD-A MOTIVATING EXAMPLE 

Some results of Section 3 (Lemma 3.1, for instance) were motivated by 
the following analogy of the spherical model in the presence of a staggered 
external field. 

In a finite volume A c 7/" we consider a classical "spin" variable 
@(x) ~ N at each site x ~ A. For simplicity we take A to be the hypercube 
A--  { -  L + 1,0 . . . . .  L}L The energy HA(@ ) of a configuration @ : A---)R 
is given by 

HA(@) = (@, [ - - A / 2  -- /~]@) -- (h,@) (A. I )  

where (a) the "lattice Laplacean" A is given by 

( -  A@)(x) = 2p@(x) -- ~ [@(x + ei) + @(x -- ei) ] (a.2) 
i = l  



Phase Transitions and Reflection PosiUvity 415 

The % i = 1 . . . . .  u, being the unit vectors in the ith direction of Z ", with 
translations defined by periodicity in A. 

(b) The scalar product (-, .) is defined by 

(f ,  g) =-- E f ( x )  g(x)  (1.3) 
x E A  

for any f, g:  A--~ C. 
(c) h : A ~ N is the external field 

+ h if x E Ae, i.e., ~ xi is even 
h (x) = i=~] (1.4) 

- h if x E A o, i.e., ~] x,. is odd 
i = 1  

(d) The "chemical potential" ~ =/~A(/3, h) < 0 is introduced in order to 
handle the spherical constraint, i.e.,/~A(/3, h) solves the equation 

(1 /A){(0 ,0) )A = 1 (A.5) 

where ( }A refers to the expectation value in the Gibbs state defined by H A 
at inverse temperature/3. 

For f :  A --> C we define its Fourier transform 

for 

^ 1 F.e-ieXf(x) 
f (P) - (:A x~A 

p ~ A * = { p = x ~ r / L ,  x E A } .  

The Hamiltonian H A reads then 

HA(O) = ~2 [~o(k) - ~t](~(k)*~(k) + h,/X~(~r) 
k E A *  

where 

(A.6) 

(A.7) 

(a) co(k) -- ~ (1 - cosk~) (A.8) 
i = 1  

and (b) ~(k)* denotes the complex conjugate of ~(k) and so ~(k)* = 
A 

k). 
Since only Gaussian integrations are involved the correlation functions 

can be obtained explicitly from the two-point functions: 

^ ^ 1 

^ ^ _ 1 1 + h2A 
@(~r)*q'(~r)}A 2fl ~0(Tr)-/~ 4[w(~r) - /~ ]2  

(A.9) 
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The sum rule (A.5) can then be written as 

^ A h 2 
• 1 
A 4[o~(~r)-/~]2 + -fi S 2[r /z] k E A *  

k ~ 0  

Therefore in the thermodynamic limit 

lim @(0)*~(0))A > 0 
A---) ~ 

iff 

(A.10) 

Since 

(A.11) 

and 

[hi - I h l  < 1  (A.12) 
2w(vr) 4vJ  

3 > I ( v )  =- 1 (_ 
d"p 

(2qr)" a,~, 2r 

.4 
@ ( 0 ) )  = 0 ( A . 1 3 )  

(A.12) implies long-range order. The existence of spontaneous (uniform) 
magnetization in this case can be obtained explicitly as for instance in Ref. 
12 or from the general theorems of Ref. 2. 

A P P E N D I X  B 

We sketch here the derivation of (3.2). We assume for simplicity that 
a = 0: the modifications introduced by the transverse field are special cases 
of standard methods. (4) 

Our starting point is the generalized Schwartz inequality, (4~ which is 
valid for reflections in planes containing or not containing lattice sites: 

exp A + OB + ~,  CiOD i 
i = l  

< exp A + 0_,4 + CiOC ~ exp B + OB + ~,  DflD~ (B.1) 
0 i = l  0 

where 

A, B, Ci, D i E ~ + , i = 1 . . . . .  N 



Phase Transitions and Reflection Positivity 417 

A corollary of (B. 1) is 

exp A + OB - ~. [ C~ + h~ - (OC~ + h;)] 2 
i=1  0 

~< exp A + OA - ~.  (Cj - OCt) 2 exp B + O B -  ~ ( C ~ -  OCs) 2 
i=1  J / O ~  L i=1  J / O  

(B.2) 

For a = 0 the system is classical and configurations o are defined by 
functions o:A--> R. The Hamiltonian for one such configuration may be 
written 

/tA(o) 

H A , ] ( O  ) = {S(O,--Ala)-  h ~.~ ty(x) 
x ~ A  

where we introduced for convenience the "difference Laplaceans" 

( -  A ~ ) ( x )  = k [2f (x)  - f ( x  + nei) - f ( x  - nei) ] 
i=l 

where e i, i = 1 . . . . .  v, denote unit vectors along the v directions in Z ~. The 
partition function Z A is given by 

o 

Let now gA(h ) denote the partition function of a system where the 
variables o(x)  in HA, 2 are replaced by o(x) + h (x ) f o r  x in some sublattice, 
say B. Explicitly, 

Z A ( h  ) = e B~(h'-A2h) ~ e--BUA(O)eBe(o'AEh) (B.3) 
a 

where the scalar product is defined by (f,  g) = ~ x e A ( x ) g ( x )  or, alterna- 
tively, in the usual way as a sum over the whole lattice, but with the proviso 
that h(x)  =-- 0 if x E A / B .  

Proposit ion B.1. 

ZA(h ) <~ Z6(O ) (B.4) 

Proof. We shall sketch the proof for v = 1, the general case being a 
straightforward extension. The presence of the external field in HA, ] forces 
us to use reflections in planes containing sites. The operation of reflection 
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about the plane containing the sites 0 and L + 1 of A (we assume L odd) is 
defined: 

o ( -  x) 0 < Ixl < L 
( O o ) ( x ) =  o ( x )  i f x = O o r x = L + l  

We have then 

where 

where 

and where 

HA, 1 = 

A =  

A + O A  

L L + I  
J E [0,o)(~)] ~- h E o(x) 

x = l  x = 0  

( O . f ) ( x )  = f ( x  + n) - - f ( x ) ,  ( O ' f ) ( x )  =~ f ( x  -- n) - - f ( x )  

HA,2(o + h) = B + OD + �89 1 - OC 1 + a I - a]) 2 

"b � 8 9  2 -- OC 2 -[- a 2 -- a-~) 2 

=-'  E [0~("-h)(x)] ~ 
B 2 x~[O,L-l]no 

= -r  E [ a ~ ( o  - h)(Ox)l 2 
D 2 x~[O, LlnB 

C l = o(1), 

a~ = h(1), 

a] = h ( -  1), 

Using (B.2) we obtain 

where 

c2 = o(L) 

a 2 = h ( L )  

ai = h ( -  L) 

ZA(h ) <~ Z A ( h  + ) l / 2 Z a ( h  - )1/2 

h(x), 
h+ (x) -- h ( -  x), 

h(x), 
h_ (x) --= h ( -  x), 

x~[0 ,L+l ]  n .  
x ~ [ - L , - l ] , ~ .  

x~E- (L+  1),0] n .  
x~[1,L]NB 

Repeating the procedure, considering reflections in the planes containing 
successively the sites { 2 , - L +  1), ( 4 , - L + 3 }  . . . .  of A, we finally 
obtain (B.4). �9 
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Remark B. 1. One might ask why reflections in planes containing 
sites of B are not permitted (together with the previous reflections about 
planes containing points of A). The point is that, for instance, a reflection 
through the plane containing 0 and L + 1 "eliminates" the quantities 
h(1), h ( -1 ) ,  h(L), and h ( - L ) .  A further reflection in the plane through 
{1 , -  L} will have as a consequence that a subsequent reflection in the 
plane containing { 2 , - L  + 1} will bring back quantities such as h(1) and 
h ( -  L), which should already have been disposed of. This does not happen 
if only reflections through planes containing points of A are considered. 
This fact is related to the modifications of the chessboard estimates when 
reflections in planes containing sites are considered (Theorem 4.3 of 
Ref. 4). 

The same proof above yields (B.4) with h(x )  = 0 for x ~ A / A .  We use 
this to obtain (3.2): (B.3) and (B.4) yield 

(eB~(o, a2h)) ~< e~C(h,~x2h)/2 

Putting h ~ hh above we find 

_4_ d (eX#,(",a~h)>[x=o= fle((o, A2h)) = fi, ~_~ ( A 2 h ) ( x ) ( ~  
d?~ xEA 

= B~<o(O)> Z (a2h)(x) = 0 
x E A  

because of translation invariance and the fact that periodic boundary 
conditions imply 

Y~ (~2h)(x)= Y, (~2h)(x)= 0 
x ~ A  x@B 

Hence 

o r  

d 2 d 2 e?,i, Se(h,Aih)/2 
dX2 (eaeE(~ < ~-~ a=o 

B2e2((o, A2h) 2> < BE(h, h2h ) (B.5) 

As written, (B.5) holds only for h real, but it extends immediately to 
complex h: 

B2,2(l(o, 2h)12) (B.6) 
(the above scalar product being antilinear in the first argument). Putting 

h (x) --= ip- x otherwise 
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We obtain from (B.6) [o e -- (2/A)l/2~],x~Ae-ip" Xo(x)]: 

(opo p) < 1 2/3cE2(p ) , p E A~, p 4= 0 (B.7) 

The above formula corresponds to (3.2) for the classical model, i 
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